

### **FACULTY OF HEALTH AND APPLIED SCIENCES**

## **DEPARTMENT OF MATHEMATICS AND STATISTICS**

QUALIFICATION: Bachelor of science; Bachelor of science in Applied Mathematics and Statistics

QUALIFICATION CODE: 07BSOC; 07BAMS

LEVEL: 5

COURSE NAME: CALCULUS 1

SESSION: NOVEMBER 2019

PAPER: THEORY

DURATION: 3 HOURS

MARKS: 100

| FIRST OPPORTUNITY EXAMINATION QUESTION PAPER |                                       |  |
|----------------------------------------------|---------------------------------------|--|
| EXAMINER                                     | Dr N. Chere and Mrs Y.Shaanika-Nkalle |  |
| MODERATOR:                                   | Prof Gunter Heimbeck                  |  |

| INSTRUCTIONS |                                                                      |  |
|--------------|----------------------------------------------------------------------|--|
| 1.           | Answer ALL the questions in the booklet provided.                    |  |
| 2.           | Show clearly all the steps used in the calculations.                 |  |
| 3.           | All written work must be done in blue or black ink and sketches must |  |
|              | be done in pencil.                                                   |  |

## PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

# SECTION A [Short answer questions] [ $2\frac{1}{2}$ marks for each question]

# QUESTION 1 [25 marks]

1. 1. Suppose that 
$$\lim_{x\to 5} f(x) = 2$$
,  $\lim_{x\to 5} g(x) = 6$ . Then

1.1.1. 
$$\lim_{x \to 5} (2f(x) - g(x)) = ----$$

1.1.2. 
$$\lim_{x\to 5} \sqrt{(f(x))^4} = ----$$

1.1.3. 
$$\lim_{x\to 5} \left(\frac{g(x)}{3f(x)}\right) = ----$$

1.1.4. 
$$\lim_{x\to 5} (x^2 - 5(f(x))^2) = -----$$

1.2. Determine the following derivatives.

1.2.1. 
$$\frac{d}{dx}(\ln(\sin x)) = -----$$

1.2.2. 
$$\frac{d}{dx}(e^{\sqrt{x}}) = -----$$

1.2.3. If y = sin(sinx), then 
$$\frac{dy}{dx}\Big|_{x=\frac{\pi}{2}} = -----$$

1.3. Suppose that f and g are continuous functions such that f(3) = 4 and

$$\lim_{x\to 3} (f(x) - 3g(x)) = 16$$
. Then the value of g (3) = -----

- 1.4. The domain of the function  $f(x) = \sqrt{x^2 + x} = -$
- 1.5. Suppose a function f has the property that for all real numbers x,  $3-|x| \le f(x) \le 3+|x|$ . Then  $\lim_{x\to 0} f(x) = -----$

### **SECTION B [Workout Problems]**

## QUESTION 2 [75]

2.1. Let 
$$f(x) = -\sqrt{1 - 3x}$$
. Then

2.1.1. find a formula for 
$$f^{-1}(x)$$
. [5]

2.1.2. state the domain of 
$$f^{-1}$$
. [3]

2.2. Evaluate the following limits if it exists.

2.2.1. 
$$\lim_{x \to -1^{-}} \left( \frac{1}{x+1} - \frac{1}{|x+1|} \right)$$
 [4]

2.2.2. 
$$\lim_{x\to 0} \frac{2x + \tan 10x}{x}$$
 [6]

2.2.3. 
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$$
 [5]

2.2.4. 
$$\lim_{x \to -3} \frac{x^3 + 27}{x^2 + 3x}$$
 [5]

2.3. Let 
$$f(x) = \frac{1}{x+2}$$
. Find  $f'(x)$  by using the limit definition of derivative. [5]

2.4. Use the precise definition of limit to prove that 
$$\lim_{x\to 2} (4-6x) = -8$$
. [7]

2.5. Use the chain rule to find 
$$\frac{dy}{dx}$$
 if  $y = \left(\frac{x^2}{x+1}\right)^3$  [5]

- 2.6. If  $x+y+xy^2=3$ , then
- 2.6.1. Use implicit differentiation to solve and express  $\frac{dy}{dx}$  in terms of x and y. [5]
- 2.6.2. use the result in (2.6.1) to find an equation of a tangent line to the curve  $x+y+xy^2=3$  at (1,1).
  - 2.7. Suppose  $f(x) = 2x^5 + x^3 + 1$ . Then

2.7.1. find 
$$(f^{-1})'(x)$$
 [5]

2.7.2. use (2.7.1) to find 
$$(f^{-1})'(4)$$
 [2]

- 2.8. Let  $f(x) = 3x^4 4x^3$ . Then find
- 2.8.1. the local maximum and local minimum value of f if there are any. [5]
- 2.8.2. the intervals on which f is increasing and on which f is decreasing. [4]
- 2.8.3. the open intervals on which f is concave upward and on which it is concave downward.

[4]

2.8.4. the inflection point(s). [2]

## **END OF EXAMINATION**